ENGINEERS ACADEMY

GATE : Mock Test Paper

Question 1 to 25 Carry One Mark Each SUBJECT

1. In the simplified design of angle iron purlins, which one of the following assumptions would 'not be valid'
(a) load component acting normal to the slope is considered
(b) bending moment about the minor axis is considered
(c) Allowable bending stress is not reduced
(d) slope of the roof should not exceed 30°
2. A soil sample having void ratio of 1.3 water content of 50% and a specific gravity of 2.60 is an state of
(a) partial saturation
(b) full saturation
(c) over saturation
(d) under saturation
3. The velocity distribution near the solid wall at a section in a laminar flow is given by $u=5 \sin (5 \pi y)$. The shear stress (in Pa) at $\mathrm{y}=0.05 \mathrm{~m}$ is
\square (use $\mu=5$ Poise)
4. At a node in a framed structure n members are meeting. Far end of all the members meeting are fixed and length of the members are respectively $1 \mathrm{~m}, \frac{1}{2} \mathrm{~m}, \frac{1}{3} \mathrm{~m}, \ldots \ldots . . \frac{1}{\mathrm{n}}$ meters. If moment M is applied at that joint then moment shared by $\mathrm{n}^{\text {th }}$ member is
(a) $\frac{2 \mathrm{M}}{\mathrm{n}+1}$
(b) $\frac{\mathrm{M}}{\mathrm{n}+1}$
(c) $\frac{\mathrm{M}}{2(\mathrm{n}+1)}$
(d) None
5. A normally consolidation clay settled 10 mm when efective stress was increased form $50 \mathrm{kN} / \mathrm{m}^{2}$ to $100 \mathrm{kN} /$ m^{2}. If the effective stress would have increased from $100 \mathrm{kN} / \mathrm{m}^{2}$ to $200 \mathrm{kN} / \mathrm{m}^{2}$, then the settlement of clay would have

6. Which of the following processes may contributed interception loss
7. Evaporation
8. Transpiration
9. Stream flow
(a) 1 and 2
(b) 1, 2 and 3
(c) 2 and 3
(d) 1 only
10. A vertical cut is made in a clay deposit $30 \mathrm{kN} / \mathrm{m} 2, \phi=0$ and $\gamma=16 \mathrm{kN} / \mathrm{m} 3$. The maximum height of the cut which can be supported is

11. Apparent colour of water sample is due to
(a) Suspended solids
(b) Dissolved solid
(c) Both (a) and (b)
(d) None of these
12. The basic principle of structural design in based on
(i) Strong column weak beam concept
(ii) Strong footing weak column concept.

Select correct statement
(a) (i) only
(b) (ii) only
(c) Both (i) and (ii)
(d) Neighter (i) and (ii)

ENGINEERS ACADEMY

CE : Full Length
GATE : Mock Test Paper
10. A vehicle moving on horizontal curved roadway of width 2.5 m and height 3.8 m , the value of stability factor is (up to three significant digit after decimal)
\square
11. Lacey's scour depth for a stream carrying a discharge of 3 cumecs per meter width and having a silt factor of 1.2 is (up to two significant digit after decimal)

12. For a cantilever AB shown in the following figure

Stiffness factor k_{21} will be $=x\left(\frac{E I}{L}\right)$ Where ' x ' $=$
\square (upto 2 digits after decimals)
13. If total hardness and alkalinity of a water sample is $500 \mathrm{mg} / \mathrm{L}$ and $300 \mathrm{mg} / \mathrm{L}$ respectively, then non carbonate hardness of the sample is
(a) $200 \mathrm{mg} / \mathrm{L}$
(b) $300 \mathrm{mg} / \mathrm{L}$
(c) $500 \mathrm{mg} / \mathrm{L}$
(d) None of the above
14. An annual flood series contains 100 years of flood data. For a return period of 200 years the Gumble's reduced variate can be taken as
\square
15. A steel bar 15 mm in diameter is pulled axially by a force of 10 kN . If the bar is 250 mm long what is the total strain energy stored by the bar. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
(a) $8.006 \mathrm{~N} / \mathrm{mm}^{2}$
(b) $353.68 \mathrm{~N} / \mathrm{mm}^{2}$
(c) $128.006 \mathrm{~N} / \mathrm{mm}^{2}$
(d) $238.006 \mathrm{~N} / \mathrm{mm}^{2}$
16. The initial length and volume of the test specimen for traixial compression test are L \& V respectively, then the area A of the specimen at failure is given by
(a) $\frac{\mathrm{V}+\Delta \mathrm{V}}{\mathrm{L}-\Delta \mathrm{L}}$
(b) $\frac{\mathrm{V}+\Delta \mathrm{V}}{\mathrm{L}+\Delta \mathrm{L}}$
(c) $\frac{\mathrm{V} \pm \Delta \mathrm{V}}{\mathrm{L}-\Delta \mathrm{L}}$
(d) $\frac{\mathrm{V} \pm \Delta \mathrm{V}}{\mathrm{L} \pm \Delta \mathrm{L}}$
17. Degree of static indeterminacy of pin jointed plane structure will be

\square
18. A uniform solid circular cantilever beam of diameter ' d ' and length ' l ' carries a uniformly distributed load w kN / m over the entire span. The same beam experience an extension ' e ' under same total tensile aload. The ratio of maximum deflection to the elongation
(a) $\sqrt{2}\left(\frac{\ell}{d}\right)^{2}$
(b) $2\left(\frac{\ell}{\mathrm{~d}}\right)^{2}$
(c) $\frac{\ell}{\mathrm{d}}$
(d) $\sqrt{\frac{\ell}{d}}$

ENGINEERS ACADEMY

CE : Full Length
19. Consider the section given below using M 25 grade of concrete and Fe415 steel is used section can be classified based on amount of reinforcement used as per LSM design criteria

(a) Balanced section
(b) Over-reinforced section
(c) Under-reinforced section
(d) data is not sufficient
20. The minimum value of friction factor f that can be occured in laminar flow through a circular pipe is (up to two significant digit after decimal) \square
21. A 75% saturated soil having mass specific gravity of 1.84 and specific gravity of soil particles is 2.70 , the void ratio in soil sample is (up to two significant digit after decimal)
\square
22. $\lim _{(y, x) \rightarrow(0,0)} \frac{x+\sqrt{y}}{x^{2}+y^{2}}$ is
(a) 0
(b) 1
(c) ∞
(d) limit does not exist
23. $\int_{y=0}^{1} \int_{x=y}^{y^{1 / 3}} e^{x^{2}} d x d y=$
(a) 121 e
(b) $\frac{1}{2}(\mathrm{e}-2)$
(c) $\mathrm{e}(\mathrm{e}-1)$
(d) e !
24. Let F is a scalar function \& $\overrightarrow{\mathrm{v}}$ is a vector in then which of the following options is incorrect
(a) $\nabla \cdot(\nabla \times \overrightarrow{\mathrm{v}})=0$
(b) $\nabla \times(\nabla f)=0$
(c) $\nabla \cdot(\mathrm{f} \overrightarrow{\mathrm{v}})=\mathrm{f}(\nabla \cdot \overrightarrow{\mathrm{v}})+)(\mathrm{grad}) \cdot \overrightarrow{\mathrm{v}}$
(d) $\nabla(\nabla \cdot \vec{v})=\nabla \times(\nabla \cdot \vec{v})-\nabla^{2} \vec{v}$
25. $u=\frac{x^{3}+y^{3}}{x+y}$ then $x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}$ equal to
(a) $\frac{\partial u}{\partial x}$
(b) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}$
(c) $\frac{\partial u}{\partial y}$
(d) $\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}$

Question 26 to 55 Carry Two Mark Each SUBJECT

26. The difference of water level in two observation well at a horizontal distance of 60 m is 5 m . the aquifer inclined at 10° to the horizontal is $\mathrm{k}=0.7 \mathrm{~mm} / \mathrm{sec}$ and depth of aquifer normal to the direction of flow is 2.951 m , the discharge through aquifer per unit width is (up to two significant digit after decimal)
\square
27. A propped cantilever of span $2 L$ is fixed at A and simply supported at B. Carry over factor $\left(\frac{M_{A}}{M}\right)$ when moment M is applied at B , is

\square (upto 2 digits after decimal)
28. A horizontal soil deposit, consists of three uniform layers. The ratio of effective average permeability of the deposit in horizontal direction to the vertical direction] is

\square (up to two significant digit after decimal)
29. Four lane carriage way having stopping sight distance 250 m length of curve is being 1500 m and radius of curve is 400 m . The setback distance from inner edge of the cruve is (up to two significant digit after decimal)
\square

ENGINEERS ACADEMY

CE : Full Length
30. In the following arrangement shown AB is circular arc and BC is horizontal. Load W is applied at C .

Deflection at C in vertical direction is
(a) $\frac{\mathrm{WR}^{3}}{3 \mathrm{EI}}$
(b) $\frac{\mathrm{WR}^{3}}{\pi \mathrm{EI}}$
(c) $4.690 \frac{\mathrm{WR}^{3}}{\mathrm{EI}}$
(d) $8.712 \frac{\mathrm{WR}^{3}}{\mathrm{EI}}$
31. $\mathrm{B} \& \mathrm{C}$ are two points on the opposite banks of a river along a chain line ABC which crosses the river at right angles to the bank. From a point P which is 150 m from B along the bank, the bearing of A is $215^{\circ} 30^{\prime}$ and the bearing of C is $305^{\circ} 30^{\prime}$. If the AB length is 200 m , the width of the river is

32. For designing a 2-phase fixed type signal at an intersection having north-south and east-west road where only straight ahead traffic is permitted for following available data

Parameter	North	South	East	West
Design Hour flow (PCU/hr)	1000	700	900	550
Saturation flow PCU/hr	2500	2500	3000	3000

Total time lost per cycle is 12 second. The optimum cycle time length (second) as per webester approach is
(a) 67
(b) 91
(c) 87
(d) 77
33. Two planes $A B$ and $B C$ which are at right angles carry shear stresses of intensity $22.5 \mathrm{~N} / \mathrm{mm}^{2}$ while the plane AB carries also a tensile stress of $\mathrm{N} / \mathrm{mm}^{2}$ as shown in figure. The shear stress on plane AC inclined at 25° to the plane AB is (up to two significant digit after decimal)

ENGINEERS ACADEMY

CE : Full Length
34. A foundation i.e. a loose sand is 4 m wide 6 m long and 1.5 m deep. The soil weight $16 \mathrm{kN} / \mathrm{m}^{3}$ and an effective angle of internal friction 22.6°, the safe bearing capacity of soil in ($\mathrm{kN} / \mathrm{m}^{2}$), adopting a factor of saftey of 2 will be
[for $\phi=22.6^{\circ}, \mathrm{N}_{\mathrm{C}}=21.55, \mathrm{~N}_{\mathrm{q}}=10.16$ and $\mathrm{N}_{\gamma}=7.44$]
(a) 350
(b) 380
(c) 237
(d) 295
35. A rectangular prestressed beam is used over an effective span of 10 m . The beam supports an imposed load of $4 \mathrm{kN} / \mathrm{m}$. The prestressing cable is parabolic with an eccentricity of 100 mm at the centre and zero at the ends. The effective prestressing force in (kN) when the load counteracts the bending effect of prestressing force at mid span (neglecting self weight of beam) is \square
36. The concrete floor of a hand regulator is level with the channel bed is 13 m long. The depth of upstream and down stream cut off wall is 2.5 m and 2.0 m respectively. The upstream FSL is 1.5 m above the floor level then the value of exit gradient as per khosla's theory is \square
37. A welded plate girder 24 m in effective span and simply supported at the two ends. It carries a uniformly distributed load of $100 \mathrm{kN} / \mathrm{m}$. If effective depth of web is 2500 mm . Then the minimum web thickness from shear consideration is

38. It the settlement ratio of foundation to plate of 30 cm diameter is case of clayey soil is twice that of granular soil, then the width of foundation (in cm) is
(a) 125
(b) 175
(c) 60
(d) 120
39. A solid cylinder of diameter 30 cm and height 15 cm is to float in water with its axis vertical in sea water ($\mathrm{s}=1.03$). If the density of the cylinder is $900 \mathrm{~kg} / \mathrm{m}^{3}$. The metacentric height (in cm) of the cylinder. \square
40. Figure shows a 30 mm diameter punch to make a hole in an 14 mm thick plate. If the force applied on the punch is 120 kN . Find the difference between average compressive stress in the punch to the average shear stress in the plate

(a) $169 \mathrm{~N} / \mathrm{mm}^{2}$
(b) $91 \mathrm{~N} / \mathrm{mm}^{2}$
(c) $39 \mathrm{~N} / \mathrm{mm}^{2}$
(d) $78 \mathrm{~N} / \mathrm{mm}^{2}$
41. A field channel has a culturable commanded area of 3000 ha. The intensities of two crops 30% and 40%. Both of these crops are Rabi crops. Crop X and Y has a kor period 20 days and 15 days while kor depth 17.5 cm and 9 cm respectively. The discharge required in the field channel to supply water to the commanded area during kor period will be (up to one significant digit after decimal)

ENGINEERS ACADEMY

GATE : Mock Test Paper
42. A 8 m thick clay layer with single drainage settles by 120 mm in 2 years. The coefficient of consolidation for this clay was found to be $6 \times 10^{-3} \mathrm{~cm}^{2} / \mathrm{s}$. The ultimate consolidation settlement is

43. A square column section of size $350 \mathrm{~mm} \times 350 \mathrm{~mm}$ is reinforced with $4-25 \phi$ bars \& $4-16 \phi$ bars, then transverse tie reinforcement would be
(a) 8 mm dia @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(b) 5 mm dia @ $240 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(c) 6 mm dia @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(d) 8 mm dia @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
44. A canal, having depth 6 m , is excavated through a soil with $\mathrm{c}=15 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{e}=0.9, \phi=20^{\circ}$ and $\mathrm{G}=$ 2.67. The side slope is 1 in 1 . The factor of safety if canal is rapidly emptied is (up to one significant digit after decimal)

ϕ	Stability number $\left(\mathbf{s}_{\mathbf{n}}\right)$
6	0.108
12	0.114
18	0.127
29	0.141

\square
45. A load of 200 kN is carried by a plate bracket riveted to coloumn as shown in figure given below. The maximum force taken up by rivet (a) is:

(a) 16.67 kN
(b) 45.83 kN
(c) 54.27 kN
(d) 50 kN
46. The drag force F_{D}, on a sphere kept in a uniform flow field on the diameter of the sphere, D ; flow velocity, V ; fluid density, p ; and dynamic viscosity, μ. Which of the following options represents the non-dimensional parameters which could be used to analyze this problem?
(a) $\frac{F_{D}}{V D}$ and $\frac{\mu}{\rho V D}$
(b) $\frac{F_{D}}{\rho V D^{2}}$ and $\frac{\rho V D}{\mu}$
(c) $\frac{F_{D}}{\rho V^{2} D^{2}}$ and $\frac{\rho V D}{\mu}$
(d) $\frac{F_{D}}{\rho V^{3} D^{3}}$ and $\frac{\mu}{\rho V D}$

ENGINEERS ACADEMY

CE : Full Length
47. A torque T is applied at the free end of a stepped rod of circular cross-sections as shown in the figure. The shear modulus of the material of the rod is G. The expression for d to produce an angular twist θ at the free end is

(a) $\left(\frac{32 \mathrm{TL}}{\pi \theta \mathrm{G}}\right)^{\frac{1}{4}}$
(b) $\left(\frac{18 \mathrm{TL}}{\pi \theta \mathrm{G}}\right)^{\frac{1}{4}}$
(c) $\left(\frac{16 \mathrm{TL}}{\pi \theta \mathrm{G}}\right)^{\frac{1}{4}}$
(d) $\left(\frac{2 \mathrm{TL}}{\pi \theta \mathrm{G}}\right)^{\frac{1}{4}}$
48. For the truss shown in the figure, the magnitude of the force (in kN) in the member SR is

(a) 10
(b) 14.14
(c) 20
(d) 28.28
49. The maximum tensile stress at the section $\mathrm{X}-\mathrm{X}$ shown in the figure below is

(a) $\frac{8 \mathrm{P}}{\mathrm{bd}}$
(b) $\frac{6 \mathrm{P}}{\mathrm{bd}}$
(c) $\frac{4 \mathrm{P}}{\mathrm{bd}}$
(d) $\frac{2 P}{b d}$
50. What is the equivalent single wheel load of a dual wheel assemble carrying $20,440 \mathrm{~N}$ each for pavement thickness of 20 cm . Centre spacing of types is 27 cm and the distance between the walls of tyres is 11 cm
(a) $32,300 \mathrm{~N}$
(b) $27,600 \mathrm{~N}$
(c) $48,880 \mathrm{~N}$
(d) 30240 N

ENGINEERS ACADEMY

CE : Full Length
51. If probability of a rainfall to be equalled or exceeded in a given year is 0.02 . Probability that given rainfall will be exceeded or equalled exactly twice is (up to three significant digit after decimal)
\square in 20 years.
52. The solution of integration $\int_{0}^{1} \frac{d x}{\sqrt{-\ln x}}$ is
(a) π
(b) $\sqrt{2} \pi$
(c) $\pi \sqrt{2}$
(d) $\sqrt{\pi}$
53. The minimum value of the function $\mathrm{xy}+\frac{9}{\mathrm{x}}+\frac{3}{\mathrm{y}}$ is \square
54. $\left[\begin{array}{lll}4 & 9 & 3 \\ 2 & 3 & 1 \\ 2 & 6 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ 7\end{array}\right]=\left[\begin{array}{l}6 \\ 2 \\ 7\end{array}\right]$. This system is
(a) Consistent with unique solutions
(b) Consistent with infinite solutions
(c) Inconsistent with no solution
(d) Consistent with 2 solutions.
55. The random variable x is normally distributed with mean 9 and standard deviation 3 and z is standard normal variate with $\mathrm{P}(0 \leq \mathrm{z} \leq 2)=0.4772$ and $\mathrm{P}(0 \leq \mathrm{z} \leq 3)=0.4987$ then $\mathrm{P}(\mathrm{x} \leq 15)$ is (up to three significant digit after decimal)

ENGINEERS ACADEMY

CE : Full Length
GATE : Mock Test Paper
Question 1 to 5 Carry One Mark Each APPTI

1. The population of a town is increased by $16 \frac{2}{3} \%$ in first year, decreased $37 \frac{1}{2} \%$ in second year and increased $57 \frac{1}{7} \%$ in third year then find the population of this town before three year if present population is 137500 :
(a) 110000
(b) 125500
(c) 120000
(d) 144000
2. Find the remainder of the division $\frac{2^{189}}{5}$:
(a) 2
(b) 3
(c) 4
(d) 1
3. A group of men decided to do a job in 4 days but 20 men dropped out everyday, the job was completed at the end of $7^{\text {th }}$ day. Find the men who are in the work initially :
(a) 120
(b) 100
(c) 160
(d) 140
4. What is the opposite of 'Tremulous'
(a) Healthy
(b) Obese
(c) Young
(d) Steady
5. Which of the following option can replace the underline section

Scarcely we had reached the office when it started raining cats and dogs
(a) had we reached
(b) we reached
(c) we reach
(d) did we reach

Question 6 to 10 Carry Two Mark Each APPTI

6. A company give 12% commission to his sales man on his total sales and above sales of $15000,1 \%$ bonus if the salesman deposited 52350 Rs. in the company after deducting his commission from total sales then find total sales :
(a) 52200 Rs .
(b) 502200 Rs .
(c) 60000 Rs.
(d) 64000 Rs.
7. Revenue earned by the central government is given in pie-chart

A $=$ Custom duty
$\mathrm{B}=$ Other
$C=$ Income tax
D = Corporation Tax
$\mathrm{E}=$ Excise duty

If the percentage of revenue earned by the central government from corporation Tax is x times to that of the percentage of money earned excise duty, then the value of x is :
(a) $\frac{41}{9}$
(b) $\frac{9}{41}$
(c) $\frac{14}{41}$
(d) $\frac{41}{14}$
8. $\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$?
(a) $\sqrt{3}$
(b) 2
(c) 4
(d) 1
9. JRD Tata used to say, "while profit motive, no doubt, provides the main spark for any economic activity any enterprisen which is not motivated by considerations of urgent service to the community becomes obsolete soon and cannot fulfill its real role in modern society.
Which of the following is the view of JRD Tata as described by the author?
(a) Consideration of urgent service to community should be side-lined
(b) The main purpose for any economic activity should be only profitability
(c) Profit should be earned with due consideration to social service
(d) Motivation to earn profit has become an outdated concept
10. Government have traditionally equated economic progress with steel mills and cement factories. While urban centers thrive and city dwellers get rich, hundreds of millions of farmers remain mired in poverty. Another green revolution is the need of the hour and to make if a reality, the global community still has much back breaking farm work to do.
What is the author's main objective in writing the passage
(a) Criticizing developed countries for not bolstering economic growth in poor nations
(b) Analyzing the disadvantages of the Green Revolution
(c) Persuading experts that a strong economy depends on industrialization and not agriculture
(d) Making a case for the international society to engineer a second Green Revolution

ANSWERS KEY

Ans 1 to 25 Carry One Mark Each SUBJECT

1. Ans.(b)
2. Ans. (b)

$$
\begin{aligned}
\mathrm{e} & =1.3, \quad \mathrm{w}=50 \% \\
\mathrm{G} & =2.60 \\
\mathrm{~S} & =\frac{\omega \cdot \mathrm{G}_{\mathrm{s}}}{\mathrm{e}} \\
\mathrm{~S} & =\frac{2.6 \times 0.5}{1.3} \times 100
\end{aligned}
$$

$\mathrm{S}=100 \%$ hence it is fully saturated
3. Ans [27 to 28$] \mathrm{Pa}$

$$
\begin{aligned}
\tau & =\mu \cdot\left(\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right)_{\mathrm{y}=0.05} \\
\tau & =27.76 \mathrm{~Pa}
\end{aligned}
$$

4. Ans (c)
5. Ans. (1)cm

$$
\begin{aligned}
& \because \Delta \mathrm{H}=\frac{\mathrm{H}_{\mathrm{O}} \mathrm{C}_{\mathrm{C}}}{1+\mathrm{e}_{\mathrm{o}}} \log _{10}\left(\frac{\bar{\sigma}_{0}+\Delta \bar{\sigma}}{\bar{\sigma}_{\mathrm{o}}}\right) \\
& \Delta \mathrm{H} \quad \propto \log _{10}\left(\frac{\bar{\sigma}_{\mathrm{o}}+\Delta \bar{\sigma}}{\bar{\sigma}_{\mathrm{o}}}\right) \\
& \frac{10}{\mathrm{x}}=\frac{\log _{10}\left(\frac{100}{50}\right)}{\log _{10}\left(\frac{200}{100}\right)}=\mathrm{x}=10 \mathrm{~mm}=1 \mathrm{~cm}
\end{aligned}
$$

6. Ans. (d)
7. Ans. (7.10 to 7.30) m

$$
\begin{aligned}
\mathrm{Sn} & =\frac{\mathrm{C}}{\mathrm{~F}_{\mathrm{c}} \cdot \gamma \mathrm{H}} \\
\mathrm{H} & =\frac{30}{1.0 \times 16 \times 0.261} \quad\left\{\mathrm{~F}_{\mathrm{C}}=1.0\right\} \\
\mathrm{H} & =7.18 \mathrm{~m}
\end{aligned}
$$

8. Ans.(a)

Apparent colour \rightarrow suspanded solid
True colour \rightarrow dissolved solid
9. Ans.(c)
10. Ans.(0.655 to 0.680)
the value of stability factor is $\frac{\mathrm{b}}{2 \mathrm{~h}}$

$$
\begin{aligned}
& =\frac{2.5}{2 \times \frac{3.8}{2}} \\
& =0.657
\end{aligned}
$$

11. Ans. (2.60 to 2.68) m

Lacey's scour depth $=1.35\left(\frac{q^{2}}{f}\right)^{1 / 3}$
$=1.35\left(\frac{3^{2}}{1.2}\right)^{1 / 2}$
$=2.64 \mathrm{~m}$
12. Ans (0.60-0.67)
13. Ans.(a)

Carbonate hardness $=$ Alkalinity $=300 \mathrm{ppm}$
min total hardness $=500 \mathrm{ppm}$
Carbonate hardness $=300 \mathrm{ppm}$
Nor carbonate hardness $=500-300=200 \mathrm{ppm}$
14. Ans. (5.2-5.3)

Gumbel's reduced variate
$\mathrm{Y}_{\mathrm{T}}=-\left[\ln \cdot \ln \left(\frac{\mathrm{T}}{\mathrm{T}-1}\right)\right]=-\left[\ln \cdot \ln \left(\frac{200}{199}\right)\right]=5.29$
15. Ans. (b)

Area of the bar $=A=\frac{\pi \times 15^{2}}{4}=176.71 \mathrm{~mm}^{2}$
Stress in the bar $=\sigma=\frac{10 \times 10^{3}}{176.71}=56.59 \mathrm{~N} / \mathrm{mm}^{2}$
Total strain energy stored $=\frac{\sigma^{2}}{2 \mathrm{E}} \mathrm{Al}$

$$
=\frac{(56.59)^{2}}{2 \times 2 \times 10^{5}} \times 176.71 \times 250=353.688 \mathrm{~N} / \mathrm{mm}^{2}
$$

16. Ans. (c)
17. Ans (2)
$D_{S}=M+R-2 J=12+4-14=2$
18. Ans. (b)
$\frac{\text { Maximum defection }}{\text { Maximum elongation }}=\frac{\frac{\mathrm{WL}^{4}}{8 \mathrm{BI}}}{\frac{\mathrm{WL}}{}{ }^{2}}$
$=\frac{\mathrm{AL}^{2}}{8 \mathrm{I}}=\frac{\frac{\pi}{4} \mathrm{~d}^{2} \times \mathrm{L}^{2}}{8 \times \frac{\pi}{64} \mathrm{~d}^{4}}$
$=2\left(\frac{1}{d}\right)^{2}$
19. Ans.(c)
$\left(\mathrm{x}_{\mathrm{u}}\right)_{\text {lim }}=0.53 \mathrm{~d}=0.53 \times 400=192 \mathrm{~mm}$
$\left(\mathrm{x}_{\mathrm{u}}\right)_{\lim }=\frac{0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {st }}}{0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}}=\frac{0.87 \times 415 \times 3 \times \frac{\pi}{4} \times(20)^{2}}{0.36 \times 25 \times 250}=151 \mathrm{~mm}$
$\left(\mathrm{x}_{\mathrm{u}}\right)<\left(\mathrm{x}_{\mathrm{u}}\right)_{\text {lim }} \rightarrow$ under reinforced
20. Ans. (0.01 to 0.04)

$$
\begin{aligned}
& \mathrm{f}=\frac{64}{2000} \\
& \mathrm{f}=0.032
\end{aligned}
$$

21. Ans. (0.75 to 0.8)

$$
\begin{aligned}
\gamma_{\mathrm{b}} & =\left(\frac{\mathrm{G}+\mathrm{Se}}{1+\mathrm{e}}\right) \gamma_{\mathrm{w}} \\
1.84 & =\left(\frac{2.70+0.75 \mathrm{e}}{1+\mathrm{e}}\right) 1.0 \\
\mathrm{e} & =0.78
\end{aligned}
$$

22. Ans. (c)

$$
\text { Let } \quad I=\lim _{(x, y) \rightarrow(0,0)} \frac{x+\sqrt{y}}{x^{2}+y^{2}}
$$

$$
\text { Put } \quad y=m x
$$

$$
\begin{aligned}
\Rightarrow \quad I & =\lim _{x \rightarrow 0} \frac{x+\sqrt{m x}}{x^{2}+m^{2} x^{2}} \quad I \quad=\lim _{x \rightarrow 0} \frac{\sqrt{x}(\sqrt{x}+\sqrt{m})}{x^{2}\left(1+m^{2}\right)} \\
& I=\infty
\end{aligned}
$$

23. Ans. (b)

$$
I=\int_{y=0}^{1} \int_{x=y}^{y^{\frac{1}{3}}} e^{x^{2}} d x d y
$$

$$
\begin{aligned}
& I=\iint_{R} e^{x^{2}} d x d y \quad ; I=\int_{x=0}^{1} \int_{y=x^{3}}^{x} e^{x^{2}} d y d x \\
& I=\int_{x=0}^{1}(y)_{y=x^{3}}^{x} e^{x^{2}} d x \\
& I=\int_{x=0}^{1} x^{x^{2}} d x-\int_{x=0}^{1} x^{3} e^{x^{2}} d x
\end{aligned}
$$

$$
\text { Put } \quad \mathrm{x}^{2}=\mathrm{t}
$$

$$
2 \mathrm{xdx}=\mathrm{dt}
$$

$$
\mathrm{I}=\frac{1}{2} \int_{\mathrm{t}=0}^{1} \mathrm{e}^{\mathrm{t}} \mathrm{dt}-\frac{1}{2} \int_{\mathrm{t}=0}^{1} \mathrm{te}^{\mathrm{t}} \mathrm{dt}
$$

$$
=\frac{1}{2}\left(\mathrm{e}^{\mathrm{t}}\right)_{\mathrm{t}=0}^{1}-\frac{1}{2} \int_{\mathrm{t}=0}^{1} \mathrm{te}^{\mathrm{t}} \mathrm{dt}=\frac{1}{2}\left(\mathrm{e}^{\mathrm{t}}\right)_{\mathrm{t}=0}^{1}-\frac{1}{2}\left[\mathrm{e}^{\mathrm{t}}(\mathrm{t}-1)\right]_{\mathrm{t}=0}^{1}
$$

$$
=\frac{1}{2}(\mathrm{e}-1)-\frac{1}{2}[1]=\frac{1}{2}(\mathrm{e}-2)
$$

24. (d) $\nabla \cdot(\nabla \times \vec{v})=0$

$$
\begin{aligned}
& \nabla \times(\nabla f)=0 \\
& \nabla \cdot(f \vec{v})=f(\nabla \cdot \vec{v})+(\nabla f) \cdot \vec{v} \\
& \nabla(\nabla \cdot \vec{v})=\nabla \times(\nabla \times \vec{v})+\nabla^{2} \vec{v} \\
& \Rightarrow \text { option (d) is wrong }
\end{aligned}
$$

25. (a)
$u=\frac{x^{3}+y^{3}}{x+y}$
It is homogeneous function of degree $\mathrm{n}=2$ in x and y .
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u=2 u$
differentiating partially with respect to x
$x \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}+y \frac{\partial^{2} u}{\partial x \partial y}=2 \frac{\partial u}{\partial x}$
$x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial u}{\partial x}$

Ans 26 to 55 Carry Two Marks Each

26. Ans. (0.12 to 0.18)

Length of aquifer between two observation wells

$$
=60 / \cos 10^{\circ}=60.296 \mathrm{~m}
$$

hydraulic gradient

$$
=\frac{\mathrm{h}}{\mathrm{~L}}=\frac{5.0}{60.296}=0.082
$$

From darcy law, discharge per unit width Website: www.engineersacademy.org

$$
\begin{aligned}
\mathrm{q} & =\mathrm{kiA} \\
& =0.7 \times 10^{-3} \times 0.082 \times(2.92 \times 1) \\
& =0.169 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& =0.169 \mathrm{~L} / \mathrm{sec}
\end{aligned}
$$

27. Ans (0.25 to 0.29)
28. Ans. (1.90 to 1.95)

In vertical flow (normal to bedding plane)
Total head loss $=\mathrm{h}$

$$
\begin{aligned}
\mathrm{h} & =\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{3} \\
\frac{\mathrm{k}_{\mathrm{v}} \mathrm{~h}}{\mathrm{H}} & =\frac{\mathrm{K}_{1} \mathrm{~h}_{1}}{\mathrm{H}_{1}}+\frac{\mathrm{k}_{2} \mathrm{~h}_{2}}{\mathrm{H}_{2}}+\frac{\mathrm{k}_{3} \mathrm{~h}_{3}}{\mathrm{H}_{3}} \\
\mathrm{~K}_{\mathrm{v}} & =\frac{\mathrm{H}}{\frac{\mathrm{H}_{1}}{\mathrm{k}_{1}}+\frac{\mathrm{H}_{3}}{\mathrm{k}_{3}}+\frac{\mathrm{H}_{3}}{\mathrm{k}_{3}}} \\
\mathrm{~K}_{\mathrm{v}} & =\frac{22 \times 10^{-4}}{\frac{6}{8}+\frac{4}{52}+\frac{12}{6}} \\
\mathrm{~K}_{\mathrm{v}} & =7.782 \times 10^{-4} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Horizontal flow

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3} \\
\mathrm{~K}_{\mathrm{H}} & =\frac{\mathrm{k}_{1} \mathrm{H}_{1}+\mathrm{k}_{2} \mathrm{H}_{2}+\mathrm{k}_{3} \mathrm{H}_{3}}{\mathrm{H}_{1}+\mathrm{H}_{2}+\mathrm{H}_{3}} \\
& =\frac{(8 \times 6+52 \times 4+6 \times 12) \times 10^{-4}}{22} \\
& =14.90 \mathrm{~cm} / \mathrm{s} \\
\frac{\left(\mathrm{k}_{\mathrm{H}}\right)}{\left(\mathrm{k}_{\mathrm{v}}\right)} & =\frac{14.90}{7.782}=1.915
\end{aligned}
$$

29. Ans.(17.50 to 17.90)m
$\mathrm{L}=1500 \mathrm{~m}, \mathrm{SSD}=250 \mathrm{~m}, \mathrm{R}=400 \mathrm{~m}$

$$
\frac{\alpha}{360}=\frac{\mathrm{SSD}}{2 \pi(\mathrm{R}-\mathrm{d})}
$$

$$
\begin{aligned}
\frac{\alpha}{2} & =\frac{250 \times 180}{2 \pi\left(400-3.5+\frac{3.5}{2}\right)} \\
& =18.143^{\circ}
\end{aligned}
$$

setback distance from centre line

$$
\begin{aligned}
m & =R-(R-d) \cos \frac{\alpha}{2} \\
& =400-\left(400-3.5+\frac{3.5}{2}\right) \cos \left(18.143^{\circ}\right) \\
& =24.876 \mathrm{~m}
\end{aligned}
$$

Set back distance from inner edge is

$$
\begin{aligned}
& =(24.876-7.00) \\
& =17.87 \mathrm{~m}
\end{aligned}
$$

30. Ans (c)
31. Ans.(111 to 114)

bearing of AP is $215^{\circ} 30^{\prime}$
bearing of PC is $305^{\circ} 30^{\prime}$

$$
\angle \mathrm{APC}=90^{\circ}
$$

is $\quad \angle \mathrm{PAB}=\mathrm{Q} \quad$ then $\angle \mathrm{BCP}=90-\mathrm{Q}$
$\triangle \mathrm{BCP}$ are similirly $\triangle \mathrm{BAP}$

$$
\begin{aligned}
\frac{\mathrm{BC}}{\mathrm{BP}} & =\frac{\mathrm{BP}}{\mathrm{AB}} \\
\mathrm{BC} & =\frac{\mathrm{BP}^{2}}{\mathrm{AB}} \\
\mathrm{BC} & =\frac{(150)^{2}}{200} \\
& =112.5 \mathrm{~m}
\end{aligned}
$$ IES \& GATE \& PSUS \& JTO \& IAS \& NET Website: www.engineersacademy.org

32. Ans. (d)

As per Webster's Method -
optimum cycle time $=\left[\frac{1.5^{\mathrm{L}}+5}{1-\mathrm{Y}}\right]$
$\mathrm{L}=2 \mathrm{n}+\mathrm{R}=$ lost time
$\mathrm{L}=12 \mathrm{sec}$
$\mathrm{Y}_{1}=$ maximum of Y_{N} and $\mathrm{Y}_{\mathrm{S}}=0.4$
$\mathrm{Y}_{2}=$ maximum of Y_{E} and $\mathrm{Y}_{\mathrm{W}}=0.3$
$\mathrm{Y}=\mathrm{Y}_{1}+\mathrm{Y}_{2} \quad \mathrm{Y}_{\mathrm{N}}=\frac{1000}{2500}=0.4$
$=0.4+0.3 \quad \mathrm{Y}_{\mathrm{S}}=\frac{700}{2500}=0.28$
$=0.7 \quad \mathrm{Y}_{\mathrm{E}}=\frac{900}{3000}=0.3$

$$
Y_{W}=\frac{500}{3000}=0.18
$$

optimum cycle time
$=\frac{1.5 \times 12+5}{1-0.7}=77 \mathrm{sec}$.
33. Ans. (8.40 to 8.60)
(8.45 to 8.60) $\mathrm{N} / \mathrm{mm}^{2}$

Given

$$
\begin{aligned}
\sigma_{\mathrm{x}} & =60 \mathrm{~N} / \mathrm{mm}^{2} \\
\sigma_{\mathrm{y}} & =0 \\
\tau & =22.5 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{Q} & =25^{\circ}
\end{aligned}
$$

Shear stress on the plane AC will be given by

$$
\begin{aligned}
\tau & =\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2} \sin 2 \theta-\tau \cos 2 \theta \\
& =\frac{60}{2} \sin 50^{\circ}-22.5 \cos 50^{\circ} \\
& =22.98-14.46 \\
\tau & =8.52 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

34. Ans. (c)
$\mathrm{B}=\mathrm{um}$
$\mathrm{L}=6 \mathrm{~m}$
$\mathrm{C}=0$ (for sand)

$$
\mathrm{N}_{\mathrm{C}}=21.55
$$

$\mathrm{D}_{\mathrm{F}}=1.5 \mathrm{~m}$
for rectangular footing

$$
\begin{aligned}
& Y=16 \mathrm{kN} / \mathrm{m}^{3} \\
& \text { fos }=2
\end{aligned}
$$

$\mathrm{q}_{\mathrm{u}}=\left(1+0.3 \frac{\mathrm{~B}}{\mathrm{~L}}\right) \mathrm{CN}_{\mathrm{C}}+\mathrm{qNq}+\left(1-0.2 \frac{\mathrm{~B}}{\mathrm{~L}}\right) \frac{1}{2} \mathrm{~B} \gamma \mathrm{~N}_{\gamma}$
$=0+16 \times 1.5 \times 10.16$
$+\left(1-0.2 \times \frac{4}{6}\right) \times \frac{1}{2} \times 4 \times 16 \times 7.4$
$\mathrm{q} 4=449.06 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{q}_{\mathrm{nu}}=\mathrm{q}_{\mathrm{u}}-16 \times 1.5=425.06 \mathrm{kN} / \mathrm{m}^{2}$
Net safe ultimate capacity $=\frac{\mathrm{q}_{\mathrm{nu}}}{\text { FOS }}=\frac{425}{2}=212.53 \mathrm{kN} / \mathrm{m}^{2}$
safe bearing capacity $=\frac{\mathrm{q}_{\text {nu }}}{\text { FOS }}+16 \times 1.6$
$=212.53+16 \times 1.5$
$=236.53 \mathrm{kN} / \mathrm{m}^{2}$
35. Ans.(500)

$$
\begin{aligned}
\mathrm{Pe} & =\frac{\mathrm{WL}^{2}}{8} \\
\frac{\mathrm{P} \times 100}{10^{3}} & =\frac{4 \times(10)^{2}}{8} \quad=\mathrm{P}=500 \mathrm{kN}
\end{aligned}
$$

36. Ans. (0.10 to 0.15)

Given data
$\mathrm{d}=$ depth of downstream pile $=2 \mathrm{~m}$
$\mathrm{H}=$ Total seepage head $=1.5 \mathrm{~m}$
$\mathrm{b}=$ Total horizontal length of floor $=13 \mathrm{~m}$
GE $=$ Exit gradient $=\frac{H}{d} \times \frac{1}{\pi \sqrt{\lambda}}$
$\lambda=\frac{1+\sqrt{1+\alpha^{2}}}{2}, \alpha=\frac{b}{d}=\frac{13}{2}$
$\lambda=\frac{1+\sqrt{1+\left(\frac{13}{2}\right)^{2}}}{2}=3.78$
$\mathrm{GE}=\frac{1.5}{2} \times \frac{1}{\pi \sqrt{3.78}}=0.12$
37. Ans. $(5$ to 6$) m m$

Self weight of plate girder

$$
=\frac{\mathrm{w} \ell}{400}=\frac{(100 \times 24) 24}{400}=144 \mathrm{kN}
$$

Self-weight of plate girder per metre length

$$
=\frac{144}{24}=6.0 \mathrm{kN} / \mathrm{m}
$$

Total uniform load

$$
\mathrm{w}^{\prime}=100+6=106 \mathrm{kN} / \mathrm{m}
$$

Maximum shear force

$$
\begin{aligned}
& =\frac{\mathrm{w}^{\prime} \ell}{2}=\frac{106 \times 24}{2}=1272 \mathrm{kN} \\
\therefore \quad \tau_{\mathrm{va}} & =0.4 \mathrm{f}_{\mathrm{y}}=100 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Minimum web thickness

$$
\begin{aligned}
\mathrm{t} & =\frac{1272 \times 10^{3}}{100 \times 2500}=5.08 \\
& \simeq 6 \mathrm{~mm}
\end{aligned}
$$

38. Ans. (b)

$$
\begin{aligned}
& \left(\frac{\mathrm{SR}}{\mathrm{SP}}\right)_{\text {clay }}=2\left(\frac{\mathrm{SR}}{\mathrm{SP}}\right)_{\text {sand }} \\
& \left(\frac{\mathrm{BR}}{\mathrm{BP}}\right)=2\left[\frac{\mathrm{BR}}{\mathrm{BP}}\left(\frac{\mathrm{BP}+0.3}{\mathrm{BR}+0.3}\right)\right]^{2} \\
& \frac{\mathrm{BR}}{0.3}=2\left[\frac{\mathrm{BF}}{0.3}\left(\frac{0.3+0.3}{\mathrm{BR}+0.3}\right)\right]^{2} \\
& \mathrm{BR}=175 \mathrm{~cm}
\end{aligned}
$$

39. Ans. (3 to 4) m

$$
\begin{gathered}
\mathrm{F}_{\mathrm{B}}=\mathrm{W} \\
{\mathrm{~d} \mathrm{gv}_{\mathrm{d}}}=\delta_{\mathrm{b}} \mathrm{gv}
\end{gathered}
$$

$$
\mathrm{h}=0.131 \mathrm{~m}
$$

$$
\mathrm{GM}=\frac{\mathrm{I}}{\mathrm{v}_{\mathrm{d}}}-\mathrm{BG}
$$

$$
\mathrm{GM}=0.0334 \mathrm{~m}=3.34 \mathrm{~cm} \quad \mathrm{BF}=1.748 \mathrm{~m} \simeq 175 \mathrm{~cm}
$$

40. Ans. (d)

Shear area of the plate $=\pi \mathrm{dt}$

$$
\begin{aligned}
& =\pi \times 30 \times 14 \\
& =1318.8 \mathrm{~mm}^{2}
\end{aligned}
$$

Average shear stress in the plate

$$
=\frac{120 \times 1000}{1318.8}=91 \mathrm{~N} / \mathrm{mm}^{2}
$$

Average compressive stress

$$
\text { in the punch } \quad=\frac{120 \times 1000}{\frac{\pi}{4}(30)^{2}}=169 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\text { Difference }=169-91
$$

$$
=78 \mathrm{~N} / \mathrm{mm}^{2}
$$

41. Ans. (1.5 to 2.0) cumec

Discharge required for crop ' X ' $=\frac{A}{D_{X}}$
$\mathrm{D}_{\mathrm{X}}=\frac{8.64 \times 20}{\left(\frac{17.5}{100}\right)}=987.4=\mathrm{Ha} /$ cumec
$\mathrm{Q}_{\mathrm{X}}=\frac{3000 \times 0.30}{987.4}=0.91$ cumec
$\mathrm{D}_{\mathrm{y}}=\frac{8.64 \times 15}{\left(\frac{9}{100}\right)}=1400 \mathrm{ha} /$ cumec
$=\mathrm{Q}_{\mathrm{y}}=\frac{3000 \times 0.4}{1440}=0.83$ cumec
$\mathrm{Q}=\mathrm{Q}_{\mathrm{x}}+\mathrm{Q}_{\mathrm{y}}=0.91+0.83=1.74$ cumec
42. Ans. (146 to 148)mm

$$
\begin{aligned}
\mathrm{h} & =8 \mathrm{~m} \text { (single drainage) } \\
\mathrm{t} & =2 \times 365 \times 24 \times 60 \times 60 \mathrm{~S} \\
\mathrm{c}_{\mathrm{v}} & =6 \times 10-7 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{v}}=\frac{\mathrm{C}_{\mathrm{v}} \cdot \mathrm{t}}{\mathrm{~d}^{2}} \\
& \mathrm{~T}_{\mathrm{v}}=\frac{6 \times 10^{-7} \times 2 \times 365 \times 24 \times 60 \times 60}{64} \\
& \mathrm{~T}_{\mathrm{v}}=0.5913
\end{aligned}
$$

as we known

$$
\begin{aligned}
\mathrm{T}_{\mathrm{v}} & =1.781-0.933 \log (100-\mathrm{V} \%) \\
0.5913-1.781 & =-0.933 \log (100-\mathrm{V}) \\
\left(\mathrm{S}_{\mathrm{C}}\right)_{\mathrm{f}} & =\frac{\left(\mathrm{S}_{\mathrm{C}}\right)_{\mathrm{t}}}{\mathrm{v}_{\mathrm{f}}} \\
& =\frac{120}{0.815} \Rightarrow 147 \mathrm{~mm}
\end{aligned}
$$

43. Ans. (a)

Dia of lateral ties $>\frac{\phi_{\max }}{4}=\frac{25}{4}=6.25 \mathrm{~mm}$
max $=6 \mathrm{~m}$
$\phi=8 \mathrm{~mm}$
spacing $\leq \mathrm{min}$ least lateral dimension $=350 \mathrm{~mm}$
$16 \phi \min =16 \times 16=256 \mathrm{~mm}=300 \mathrm{~mm}$
spacing $=250 \mathrm{~mm}$
So provide lateral reinforcement of $8 \mathrm{~mm} \phi @ 250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
44. Ans. (1.10 to 1.40)

$$
\begin{aligned}
\mathrm{r}_{\text {sat }}= & \left(\frac{\mathrm{G}+\mathrm{e}}{1+\mathrm{e}}\right) \mathrm{r}_{\mathrm{w}} \\
\Rightarrow \quad & \\
& \left(\frac{2.67+0.9}{1+0.9}\right) 9.81 \\
\mathrm{r}_{\text {sat }} & =18.43 \mathrm{kN} / \mathrm{m}^{3} \\
\mathrm{r}^{\prime}= & 18.43-9.81 \\
= & 8.62 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

in case of sudeen dradown angle f empirically reduce to ϕ_{w},

$$
\begin{aligned}
& \phi_{\mathrm{w}}=\text { Weighted friction angle } \\
& \phi_{\mathrm{w}}=\frac{\mathrm{r}^{\prime}}{\mathrm{r}_{\text {sat }}} \phi .
\end{aligned}
$$

,

$$
\begin{aligned}
& =\left(\frac{8.62}{18.43}\right) 20^{\circ} \\
& =9.35^{\circ}
\end{aligned}
$$

For $\beta=45^{\circ}, \phi_{\mathrm{w}}=9.35^{\circ}, \mathrm{s}_{\mathrm{n}}=0.111$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{C}}=\frac{\mathrm{c}_{\mathrm{u}}}{\mathrm{~s}_{\mathrm{n}} \mathrm{r}_{\mathrm{sat}} \mathrm{H}} ; \quad \mathrm{F}_{\mathrm{C}}=\frac{15}{0.111 \times 18.43 \times 6} \\
& \mathrm{~F}_{\mathrm{C}}=1.22
\end{aligned}
$$

45. Ans. (c)

Force in each rivet due to sheer $\frac{200}{12}=16.67 \mathrm{kw}$
force due to torsional moment $=\frac{(\text { p.e }) r_{i}}{\Sigma \rho_{i}^{2}}$

$$
\begin{aligned}
& \mathrm{r}_{1}=\sqrt{(100)^{2}+(250)^{2}}=269.26 \mathrm{~mm} \\
& \mathrm{r}_{2}=\sqrt{(100)^{2}+(150)^{2}}=180.28 \mathrm{~mm} \\
& \mathrm{r}_{2}=\sqrt{(100)^{2}+(10)^{2}}=111.80 \mathrm{~mm}
\end{aligned}
$$

$$
\sum_{i=1}^{12} \mathrm{r}^{2}=470004.26 \mathrm{~mm}^{2} ; \mathrm{e}=300 \mathrm{~mm}
$$

$$
\mathrm{F}_{\mathrm{T}}=\frac{200 \times 300 \times 269.26}{47004.26}=45.83 \mathrm{kw}
$$

Angle Q between F_{T} and F_{D} is $=\frac{100}{269.26}=0.3714$
So resultent force in rivet
$1=\sqrt{\left(\mathrm{F}_{\mathrm{D}}\right)^{2}+\left(\mathrm{F}_{\mathrm{T}}\right)^{2}+2 \mathrm{~F}_{\mathrm{D}} \cdot \mathrm{F}_{\mathrm{T}} \cdot \cos \mathrm{Q}}$

$$
=54.27 \mathrm{kw}
$$

46. Ans. (c)

Dimensionless parameters

$$
\operatorname{Re}=\frac{\rho V D}{\mu}=\text { dimensionless }
$$

Also

$$
\frac{F_{D}\left(\mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}\right)}{\mathrm{s}\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \mathrm{v}^{3}\left(\frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right) \times \mathrm{D}^{2}\left(\mathrm{~m}^{2}\right)}=\text { dimensionless }
$$

47. Ans. (b)

$$
\begin{aligned}
\theta & =\theta_{1}+\theta_{2} \\
& =\frac{T L}{G \frac{\pi}{32}(2 d)^{4}}+\frac{T\left(\frac{L}{2}\right)}{G \frac{\pi}{32} d^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\frac{\mathrm{TL}}{\pi \mathrm{Gd}^{4}}\left[\frac{32}{16}+\frac{32}{2}\right] \\
& \mathrm{d}=\left(\frac{18 \mathrm{TL}}{\pi \theta \mathrm{G}}\right)^{\frac{1}{4}}
\end{aligned}
$$

48. Ans. (c)

$$
\begin{align*}
& \mathrm{R}_{\mathrm{P}}+\mathrm{R}_{\mathrm{X}}=30000 \\
& \Sigma \mathrm{M}_{\mathrm{P}}=0 \\
& \mathrm{R}_{\mathrm{X}} \times 3=2 \times 30000 \\
& \Rightarrow \quad \mathrm{R}_{\mathrm{X}}=20 \mathrm{kN} \\
& \text { and } \quad \mathrm{R}_{\mathrm{P}}=10 \mathrm{kN} \\
& \text { For balance at }{ }^{\prime} \mathrm{X} \text { ' } \rightarrow \mathrm{F}_{\mathrm{RX}}=20 \mathrm{kN} \\
& \text { at } \quad{ }^{\prime} \mathrm{RT}^{\prime} \rightarrow \mathrm{F}_{\mathrm{RT}} \cos 45^{\circ}=20
\end{align*}
$$

From equation (1) and (2)

$$
\mathrm{F}_{\mathrm{SR}}=20 \mathrm{kN}
$$

49. Ans. (a)

The load ' p ' will be acting like as eccentric load at $\mathrm{c} / \mathrm{s} \mathrm{x}-\mathrm{x}$

$$
\begin{aligned}
\mathrm{e} & =\left(\frac{\mathrm{d}}{4}\right) ; \quad \sigma=\frac{\mathrm{P}}{\mathrm{~A}}+\frac{\mathrm{Pe}}{\mathrm{Z}} \\
& =\frac{\mathrm{P}}{\mathrm{~b}(\mathrm{~d} / 2)}+\frac{\mathrm{P}(\mathrm{~d} / 4)}{\left(\frac{\left.\mathrm{b}(\mathrm{~d} / 2)^{2}\right)}{6}\right)} \\
& =\frac{2 \mathrm{P}}{\mathrm{bd}}+\frac{6 \mathrm{P}}{\mathrm{bd}}=\frac{8 \mathrm{P}}{\mathrm{bd}}
\end{aligned}
$$

50. Ans. (d)
51. Ans. (0.050 to 0.053)

$$
\begin{aligned}
\mathrm{P}_{1} & ={ }^{20} \mathrm{C}_{2} \times(0.02)^{2} \times(0.98)^{18} \\
& =0.0528
\end{aligned}
$$

52(d) $\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{-\ln x}}$
Put $\quad-\ln x=t^{2}$
or $\quad \ln x=-t^{2}$
or $\quad \mathrm{x}=\mathrm{e}^{-\mathrm{t}^{2}}$
Hence, $\quad d x=-2 t e^{-t^{2}} d t$

$$
\mathrm{I}=-2 \int_{\infty}^{0} \mathrm{e}^{-\mathrm{t}^{2}} \mathrm{dt}=2 \int_{0}^{\infty} \mathrm{e}^{-\mathrm{t}^{2}} d \mathrm{dt}
$$

Put $\quad t^{2}=y$
or $\quad \mathrm{t}=\mathrm{y}^{1 / 2}$

$$
\mathrm{dt}=\frac{1}{2} \mathrm{y}^{-\frac{1}{2}} \mathrm{dy}
$$

$$
\mathrm{I}=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{y}} \mathrm{y}^{-\frac{1}{2}} \mathrm{dy}=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{y}} \mathrm{y}^{\frac{1}{2}-1} \mathrm{dy}
$$

$$
=\sqrt{\frac{1}{2}}=\sqrt{\pi}
$$

53. Ans. (9)

$$
\begin{gathered}
z=f(x, y)=x y+\frac{9}{x}+\frac{3}{y} \\
P=\frac{\partial z}{\partial x}=y-\frac{9}{x^{2}}, q=\frac{\partial z}{\partial y}=x-\frac{3}{y^{2}} \\
r=\frac{\partial^{2} z}{\partial x^{2}}=\frac{18}{x^{3}}, s=\frac{\partial^{2} z}{\partial x \partial y}=1, \\
t=\frac{\partial^{2} z}{\partial y^{2}}=\frac{6}{y^{3}}
\end{gathered}
$$

,

Putting $\quad \mathrm{p}=\mathrm{q}=0$

$$
\begin{align*}
& y-\frac{9}{x^{2}}=0 \text { or } x^{2}=\frac{9}{y} \tag{1}\\
& x-\frac{3}{y^{2}}=0 \tag{2}
\end{align*}
$$

Put $\quad \mathrm{x}=\frac{3}{\mathrm{y}^{2}}$ in equation (1)

$$
\begin{aligned}
& \quad \frac{9}{y^{4}}=\frac{9}{y} \\
& \Rightarrow \quad y^{4}=y \\
& \text { or } \quad \mathrm{y}\left(\mathrm{y}^{3}-1\right)=0 \\
& \qquad y=0 \text { or } \mathrm{y}=1 \\
& \text { when } \quad \mathrm{y}=0 ; \mathrm{x}=0 \\
& \text { when } \quad \mathrm{y}=1 ; \mathrm{x}= \pm 3 \\
& \Rightarrow \text { critical points are }(3,1),(-3,1) \text { and }(0,0) \\
& \text { At }(3,1), \quad \mathrm{rt}-\mathrm{s}^{2}>0 \quad \& \mathrm{r}>0 \\
& \Rightarrow \quad(3,1) \text { is point of minimum } \\
& \text { At }(3,1), \quad\left(\mathrm{rt}-\mathrm{s}^{2}\right)<0
\end{aligned}
$$

$\Rightarrow(-3,1)$ is point of inflection
At $(0,0),\left(r t-\mathrm{s}^{2}\right)<0$
$\Rightarrow(0,0)$ is point of inflection

$$
\begin{aligned}
\Rightarrow \quad \mathrm{f}_{\min } & =\mathrm{f}(3,1)=(3)(1)+\frac{9}{3}+\frac{3}{1} \\
& =3+3+3=9
\end{aligned}
$$

54.(c)

$$
(\mathrm{A} \mid \mathrm{B})=\left[\begin{array}{llll}
4 & 9 & 3 & 6 \\
2 & 3 & 1 & 2 \\
2 & 6 & 2 & 7
\end{array}\right]
$$

$\mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow 2 \mathrm{R}_{3}-\mathrm{R}_{1}$

$$
\approx\left[\begin{array}{cccc}
4 & 9 & 3 & 6 \\
0 & -3 & -1 & -2 \\
0 & 3 & 1 & 8
\end{array}\right]
$$

$$
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}
$$

$$
\approx\left[\begin{array}{cccc}
4 & 9 & 3 & 6 \\
0 & -3 & -1 & -2 \\
0 & 0 & 0 & 6
\end{array}\right]
$$

$\rho(A)=2, \rho(A \mid B)=3$, No. of unknown $=n=3$
$\because \quad \rho(\mathrm{A})<\delta(\mathrm{A} \mid \mathrm{B})$
Hence, system is inconsistent and have no solution.
55. Ans. (0.976 to 0.978)

$$
\begin{gathered}
\mu=9, \quad \sigma=3 \\
\mathrm{P}\left(\mathrm{x} \leq 15=\mathrm{P}\left(\frac{\mathrm{x}-\mu}{\sigma} \leq \frac{15-\mu}{\sigma}\right)\right.
\end{gathered}
$$

$$
\begin{aligned}
& =\mathrm{P}\left(\mathrm{z} \leq \frac{15-9}{3}\right) \\
& =\mathrm{P}(\mathrm{z} \leq 2) \\
& =0.5+\mathrm{P}(0 \leq \mathrm{z} \leq 2) \\
& =0.5+0.4772 \\
& =0.9772
\end{aligned}
$$

Ans 1 to 5 Carry One Mark Each APPTI

1. Ans. (c)

$$
\begin{aligned}
& 16 \frac{2}{3} \%=\frac{1}{6} \\
& 37 \frac{1}{2} \%=\frac{3}{8} \\
& 57 \frac{1}{7} \%=\frac{4}{7}
\end{aligned}
$$

Let population $\Rightarrow \mathrm{x}$

$$
\begin{aligned}
x \times \frac{7}{6} \times \frac{5}{8} \times \frac{11}{7} & =137500 \\
x & =120000
\end{aligned}
$$

2. Ans. (a)

$$
\frac{2^{189}}{5} \text { is written as } \frac{2 \cdot\left(2^{2}\right)^{94}}{5}=2\left[\frac{(5-1)^{94}}{5}\right]=2
$$

3. Ans. (d)

$$
\text { Total work }=\mathrm{m} \times 4=4 \mathrm{~m}
$$

$\mathrm{m}+(\mathrm{m}-20)+\ldots$ are in A.P.

$$
\begin{gathered}
S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
\Rightarrow \frac{7}{2}[2 m+(7-1)(-20)]=4 m \\
m=140
\end{gathered}
$$

4. Ans. (d)
5. Ans. (a)

Ans 6 to 10 Carry Two Marks Each APPTI
6. Ans. (c)

Total sales $=\mathrm{x}$

$$
\text { Commission }=\frac{\mathrm{x} \times 12}{100}
$$

$$
\begin{aligned}
\text { Bonus } & =(x-15000) \times \frac{1}{100} \\
\text { Total earning } & =\text { Commission }+ \text { Bonus }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{12 \mathrm{x}}{100}+(\mathrm{x}-15000) \frac{1}{100} \\
& =\frac{12 \mathrm{x}}{100}+\frac{\mathrm{x}}{100}-150 \\
& =\frac{13 \mathrm{x}}{100}-150
\end{aligned}
$$

Total sales - Earning $=52350$

$$
\begin{aligned}
\mathrm{x}-\left(\frac{13 \mathrm{x}}{100}-150\right) & \Rightarrow \frac{87 \mathrm{x}}{100}=52350-150 \\
& =52200 \\
\mathrm{x} & =60,000 \text { Rs. }
\end{aligned}
$$

7. Ans. (b)

$$
\begin{aligned}
\mathrm{D} & =9 \%, \mathrm{D}=\mathrm{x} \\
\mathrm{E} & =41 \% \\
\mathrm{D} & =\mathrm{xE} \\
9 \% & =41 \% \mathrm{x} \\
\mathrm{x} & =\frac{9}{41}
\end{aligned}
$$

8. Ans. (b)

$$
\begin{aligned}
& \sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{(2+\sqrt{3})^{2}}}}=\sqrt{-\sqrt{3}+\sqrt{19+8 \sqrt{3}}} \\
& =\sqrt{-\sqrt{3}+\sqrt{(4+\sqrt{3})^{2}}} \\
& =\sqrt{-\sqrt{3}+4+\sqrt{3}}=\sqrt{4}=2
\end{aligned}
$$

9. Ans. (c)
10. Ans. (d)
,
